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1. PROBLEM FORMULATION

Given a set of mean free air gravity anomalies at sea level

and associated rms-error estimates, the accuracy of a predicted

gravity disturbance vector in high altitude (30 000 - 200 000 ft)

should be estimated. The underlying prediction concept is least-

squares collocation based on a homogeneous and isotropic global

covariance function for free air gravity anomalies, which is sup-

posed to provide best linear unbiased estimates with "best" depen-

ding on the choice of the covariance function and on the data error

characteristic.

Although a complete and consistent prediction algorithm

(a sub-module of GSPP) was available (SUnkel, 1980), the design

of a strictly problem-oriented procedure turned out to be necessary:

the prediction algorithm of GSPP is designed for the general case

of a heterogeneous set of irregularly distributed data; it does

not take advantage of symmetries in the data distribution. Since

the data sets to be studied are fairly large (> 2000), a straight-

forward least-squares collocation solution turned out to be prohibit-

ive because of excessive computation time requirements. Therefore,

studies have been carried out which led to the realization of a

computer routine,well tailored for the problem in consideration:

blockwise homogeneous data which are symmetrically distributed with

respect to the computation point. Depending on its latitude, the

calculation speed can be increased by a factor of at least 8 and

at most 64 relative to non-problem-oriented algorithms. Tests and

comparisons with the existing prediction module have been carried

out with small data sets.

Stimulated by the result of practical experiments (Rapp and

Agajelu, 1975) showing that collocation solutions differ from Pois-

son integral solutions by about 10 % only, detailed studies were

performed using this approach. Rapp's findings are largely confirmed

by my results; this is quite remarkable since the integral estimation

presented here is almost exclusively performed in the frequency

domain.
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2. THE DATA

The data set to be used in these studies consists of mean

free air gravity anomalies covering the surface of the sphere

partly as well as totally. The arrangemient of the data is symmet-

rical with respect to the computation point: Starting with

5' x 5' mean anomalies in a rectangular region with the computa-

tion point P as its center, rectangular zones are defined, each I'
zone being completely covered by mean anomalies, 15' x 15'

10 x 1°  and 50 x 50 means (Fig. 2.1).

50x 50  50x5"

lox 10

15'x IS'

5*x

FIG. 2.1 Data arrangement

The prediction (computation) point is assumed to have a latitude of
0p= 40

As far as the data distribution and the a priori estimates

of corresponding rms-estlmates are concerned, 18 cases had to

be studied. The following two tables summarize these cases.

,..,..



Case Pi (5'x5') i 2 (15' 15) ! 3(i I) - 4 5 0) ( 5(5) 5)

1 "2x2' 60 80 26 30 500 70 180 360

2 3 x4 7 )9 26 x30 50° 70 180'360

3 30 40 7 90 300 340 50 x 70' 1800 360-

4 30 4 ' 709 38 x42 50 -70' i 1 3 360 -

4 7 0 0 0 0 10x6

5 3 x4X 10 x12 26 °30 50 °70 180 '360 c

6 30°x40 160x18 260x300 500 70C 180 x360

0 0 0 0
7 70-90 10 X12 26 x30' 50' 70 18Ox360'

0 0 0 0 I008 3°x4 7o×9 260×30' 60°10 °  180' 360"

9 30 x4 16 X18 380 x42' 60X100 180'X3600

TABLE 2.1 Data region sizes (60,x) , centered at the

computation point.

rms (mgal) 5'1x5' 15' x15' I~l 1 5°x5° N 4 5 5()

a ±8 ±8 ±5 -3 ±5

b ±10 ±7 t4 I ±3 ±5

TABLE 2.2 Estimated rms errors of mean anomalies.

Error correlations were to be neglected throughout (data error co-

variance matrix is diagonal), a questionable assumption in the

author's opinion.

Five levels of prediction (= height of the computation

point) were considered:

Li
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hP (30 000, 40 000, 70 OO, 100 000, 200 000) feet.

The estimated quantity is the gravity disturbance vector gP

which is defined as the difference vector between the actual and

the normal gravity vector,

5g = gp-yp , (2.1)

taken at the same point (Heiskanen and Moritz, 1967, p. 85). The

gravity vector is the gradient of the corresponding potential;

therefore, the gravity disturbance vector is the gradient of the

disturbing potential T

5gp = gradPT . (2.1)'

The following chapters deal with accuracy estimation processes

for the 3 components of 6g , the radial component 6 , and

the two horizontal components 6 (along the meridian) and

(along the parallel).

".-, ,V



3. COLLOCATION SOLUTION

The mean square error of a predicted gravity field quantity

can be estimated by

2 = Cp - C-ICp (3.

(Moritz, 1980, p.80) . Here m2 denotes the predicted mean 3nuireP
error, C2 p the variance of the predicted quantity, and the po-

sitive (strictly speaking: non-negative) quantity CTCC-Ic thep -p
gain of prediction; C is the cross-covariance vector between

the predicted quantity and all data, C = C + D , where C donotes

the data covariance matrix and D the a priori data error covarin-

ce matrix. D reduces to diagonal form for vanishing error corre-

lations.

All variances and covariances are derived from one connon

covariance function, say the covariance function of the disturbing

potential K(P,Q) . K is harmonic with respect to P and Q

outside some sphere r =RB ; furthermore, it is usually chosen

to be homogeneous and isotropic, expressed by its independence

of horizontal position and direction. This is why K(P,Q) depends

only on the product of the moduli of the radius vectors r Rr

and the spherical distance w between the two points P and

Q (which are located outside r = RB

Rg' )n+l
K(P,Q) k I P (Cos, ) ; (3.2)

r PQn=2 n rrQj

(k n , n = 2, .... denote (model) degree variances and P the

n'th degree Legendre polynomial.

All covariances (which enter into the estimation equation

(3.1)) are obtained by applying the rule of covariance propatation.

I .. . . .. . . . . .. . . . . .. . . .. I-....I I I- i



Since the linear operatcr, relating the disturbing :oIential -o 

gravity anomaly, is homogeneous and isotropic, tbce h..oer.'n

isotropy of the aravizy anomaly covariance furrtin f'ollows.

A least-squares collocation solution is burdened by two

se,erF problems: the calculation of the many individual zovariaces

an i the inversion cf the covariance matrix. Therefore, every pos-

sibility to reduce the computational effort should be favoraoly

c.onsidered. In the cases to be studied here, it is particuLarly

the regular data *istribution which can be advantageously taken

into account in the structure of the covariance matrix and its in-

verse.

The fact that mean anomalies are to be used as data requires

special consideration: a mean anomaly is defined over a "rectang-

ular" block (,J) ; consequently, the linear functlonals which

have to be applied to the covariance function involves an integrat.on

over that particular rectangle. Because of the 5tt'icture of the

kernel. (covariance function), such integrations could be performed.

only approximately by a proper numerical integration method, a

practically impossible enterprise: first, because of the tremendous

ccmputationnl effort, and second, because of the approximations

involved. (Integrating the covariance function numrerically over a

certain region means approximating the covariance function bv a

set of locally restricted polynomials, usually step functions.

Such covarianco approximations introduce spectrum disturbances re-

suiti g i: catrly negative eigenvalues from a certain degree on

(Stnkei, 1978). By numerical integration of the covariance function

we, therefore, trade in an integrated effect in terms of possible

sirailarities cf tihe (anyway, not very stable) covariance matrix.)

For these reasons, it s virtually inevitable to replace the covari-

ances between mean values at zero altitude by expressions which

avoid covariance integrations. Two considerations, which go back

to C.C. Tsch~rning (Tscherning and Rapp, 1974, p. 70), lead to the

replacement of a mean anomaly at zero altitude by a corresponding

point anomaly at some specified altitude, depeniding on the block

size and or. the param'eters of the covariance function : a) re-

'.1.- -. _,~d C .
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placing the rectangular blocks over which the mean anomalies are

defined by circular regions of equal size, it can be shown that

the corresponding mean anomaly covariance function is obtained

through a multiplication of the degree variances by the square

of the eigenvalues of the moving average operator (Scnwarz, 19-6,

p. 35 ff.). The corresponding infinite series, however, can no

longer be represented by a closed covariance expression; the in-

finite series, could, for practical purposes, bc terminated at

a certain degree n - 200 for 50x5 " , 300 for S'x5'

block size) , the summations, however, are too time consuming.

Therefore, there seems to be only one simple way to overcome this

difficulty: b) replacing the squares of the eigenvalues of the

moving average operator by the (n+l) 'th power of a quantity

u < 1 , with u optimally fitted. un l can be easily ccmbinred
with (R2/r r )n+ which leads to two interpretations: either a

B PQ
diminishing of the radius of the Bjerhammar sphere RB or an up-

ward continuation of the covariance function to a certain altitude

leaving RB unchanged; personally I find the latter interpretation

more logical; moreover, it preserves consistency in the domain of

homonicity. The u-values and altitudes corresponding to different

block sizes can be found in (Schwarz, 1976, p. 39).

Keeping these conceptual replacements in mind, we can from

now on formally consider mean gravity anomalies in zero altitude

as point gravity anomalies in a certain elevation. In the following,

some practical and theoretical considerations are made which put

emphasis on the structure of the covariance matrix for gridded data.
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3.1 Collocation solution for gridded data

The r1ollowing studies deal with regularly distributed mean

anomalies, which, for reasons explained before, can be treated

like gridded point values. The coverage is unfortunately not

total (mean anomalies of constant block sizes are restricted to

rectangular zones surrounding the computation point). A total

coverage of the sphere with gridded homogeneous data could be

treated in a very fast and elegant way taking advantage of all

existing symmetries (Colombo, 1979). Even in the case of a partial

gridded data coverage, however, the structure of the data distribu-

tion carries over to the structure of the corresponding covariance

matrix. These structures can advantageously be exploited in set-

ting up and inverting the covariance matrix.

Let us illustrate such a typical structure by means of a

very simple example: a geographical grid of data with 4 rows

(parallels) and 6 cols (meridians) (Fig. 3.1). Parallels are

assumed to be equally spaced by a and meridians are assumed to

be equally spaced by 4!

P4.i P 2  N,

P 3 1  N3

1 21 P N2

11 2 _ -- N,,

M3 M-2 M- 1  Mi M2 M3

FIG. 3.1 Gridded data arrangement

*1

-- -. -
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The corresponding covariance matrix is a 6-4 x 6.4 matrix. We

partition the covariance matrix into 6 x 6 submatrices each

having dimension 4 x 4 in accordance with the number of columns

(6) and rows (4) . The arrangement should be made such that the

column counting is M1 , M2 , M 3, M-1 , M_2, M-1 (from inside towards

outside). If we denote the (4 x 4) covariance matrix between

two columns separated by mAN with C , the full covariance

matrix has the following structure:

CO C, C2  C, C2 C,

C, CO  C 1  C2  C3  C,

C2  C, C O  C 3  C4 C 5
C = - - - - - - - (3.3)

C 1  C 2  C 3  CO C1  C 2

C 2  C 3  C4 C1  Co C,

C3  C4  C 5  C2  C1  C O

Three properties can be derived from (3.3) immediately:

a) C has only 6 different submatrices C O , ..., C 5

b) C can be partitioned into 2 x 2 blocks

E F

C =(3.4a)
F E

with

Co C, C2  C, C 2  C3

E C] CO  C1  and F = C2  C3  C4

C2  C, CO  C3  C4  C5

(3.4b)
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c) The row-sum of C equals E + F and is constant - a very

important property which will be shown to account for sub-

stantial reductions in the inversion time.

The submatrix CO  (covariance matrix of column M, with itself)
is structured like E , the other submatrices C , i > 0

I

(covariance matrix of two distinct columns separated by i Lk)

are structured like F ; e.g.

coo c~, cg2  cg3] co c0, c02  1c

o C C 0 C 0 C1 C1
C0  C00  C01  C02  Cc 11  C12  C13

C' G00 ,I i II II
cC Co co C ,O cC 11 C2 c2

CO C C0  C 0 C1  1 1 1
0 3 062 0. 0O L O C 13  C2 3  C 33

(3.4c)

Consequently, we observe two levels of structurization: the column-

structure (CO, ... , C 5 ) and the block-structure (E, F)

Quadratic matrices with constant row-sum

In connection with probability theory we will sometimes

find matrices for which the sum of the row-elements is constant

and equal to C . It can be shown (ZurmUhl, 1964, p. 221 ff.)

that the corresponding inverse has also a constant row-sum equal

tu 1/C

This fact leads to the question whether a generalization

is possible such that the elements of the matrix are themselves

submatrices.
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Theorem: Let C be a non-singular quadratic matrix consisting

of quadratic submatrices of equal size, and let the row-sum be

constant and equal to E Then C consists of quadratic" sub-

matrices of equal size and has a constant row-sum equal tn

Proof: Obviously, C has an eigenvector-matrix S whose elements

are unit-matrices, and E is the eigenvalue-matrix,

CS = SZ (3.5a)

It follows immediately that S is also the eigenvector-matrix of
C-1  ; the eigenvalue-matrix is E-1

C-IS = SZ --  (3.5b)

Consequently, Z-1  is the row-sum of the submatrices of C-- o

In our example this means that

E F
C = [F EJ E + F

(3.6)

- I G H-1
C -- G + H =(E + F) -

H G

What are the consequences for the estimation of the accuracy of a

gravity field quantity like 6r at a point P , located on the

line of symmetry with respect to the data grid?

Let us consider the cross-covariance vector C.p ; it relates

(statistically) the predicted quantity at P with all the other
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data. Since the data are regularly distributed on a grid, whose
line of symmetry passes the prediction point P , it follows

other,

P Cp (3.7)

(C is the cross-covariance vector between the predicted quantity

at P and all gridded data east of P ; it is at the same time
the cross-covariance vector between the predicted quantity at P

and all gridded data west of P .) Introducing (3.6) and (3.7)

into the error estimation equation (3.1), we obtain

m2  T T G H [CP 1

which obviously reduces to

m2 = C -2 CT (G + H) C
P PP P1 Pi

or

T -1

m2 =C - 2 CT (E + F) C (3.8)P PP P1 Pi

(In the derivations above it was tacitly assumed that the data
were free of noise; it can easily be shown, however, that (3.8)

holds also if constant noise is introduced with error covariances

dependent on the spherical distance.)
Equation (3.8) shows, how one single symmetry in the data

pattern (here: symmetry with respect to the meridian of the pre-

WL * i"
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4

diction point P ) can advantageously be used to reduce the compu-

tational effort drastically: apart from the substantial reduction

in the number of covariance calculations, an application of the

above theorem leads to splitting the size of the covariance matrix

into a half. Since matrix inversion times increase with the 3rd

power of its dimension, we conclude that a gain in speed of a

factor 8 is rendered possible.

So far only symmetry with respect to the meridian has been

considered. This is the case to be studied here (latitude of the

prediction point is different from zero). The principle described

above, however, can also be applied if two symmetries exist:

symmetry with respect to the meridian and symmetry with respect

to the equator. In order to take advantage of this special case,

the prediction point P needs to coincide with the center of sym-

metry (%P = 0) .
In Fig. 3.2 a data pattern of this kind is symbolically il-

lustrated (each circle represents a grid of meridians and parallels).

1 2

tp 
equator

:34

FIG. 3.2 Symetry with respect to meridian and

equator.

. . . • ,
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.The covariance matrix consists of 4 submatrices (2 in the

former case)

CI1 C12 Cl 3  C 1 4I

C12 C11 C14 C13C =(3.9)
C13 C14 e11 C12

C14 C13 C12 C11

The row-sum is obviously constant and equal to z with

E= C1 + C12 + C13 + C1  . (3.10)

In analogy to (3.7) the cross-covariance vector between the pre-

dicted quantity at P and the data consists of 4 equal subvectors,

Cp
P1

Cp!C (3.11)

'C
P1

Observing the above theorem, the error estimation equation (3.1)

can be expressed by

2 T T T C

P pp 1 lcplcPl [KII 12 3 14 Pi

K2 KI K4 K3 Cp

K13 K 1 4  11 K 1 2  Cp1

K 1 4  K1 3  K 1 2  K 1 1  CPIj

. . . (3.12a)
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with

KII + KI2 + K1 3 + K1 4  (3.12b)

Consequently, the mean square error is simply given by

=2 C~ - 4 C T C1  + C 2 + C + Cj4JCp . (3.13)

mp cPP 
Cp1 11 12 13 14)- 

I p " "

It should again be noted that this error estimation equation is

valid if the data pattern has two lines of symmetry with respect

to the prediction point. The size of the original covariance

matrix to be inverted is split into 4 ; therefore, a gain in

speed by a factor of 64 can be expected in this case of merid-

ional and equatorial symmetry.

i
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4. INTEGRAL APPROACH

It is well-known that the disturbing potential T can

be expressed in terms of free air anomalies Ag by

T~r'1, R 'f~ J S(r,ip)~gda (4.1a)

w!~ith S(r,oi) denoting the spatial Stokes kernel

S(r,p) - 2R 3 R1 _ R2 co 5+ 31n~ r-RcosP+l
1 r r FrT csp2r

(4.1b)
(Heiskanen and Moritz, 1967, p. 233).

R stands for the mean radius of the earth, '~for the spherical

distance and 1 for the spatial distance between two points,

1 - (r 2 + R2 - 2rRcos*) V2 (4.1c)

The quantity of interest is the gradient of T

grad T grad S (P,Q)Ag (Q) da(Q)
a

r-.presented in terms of 3 components

6 (P) 2 -JD S(P,Q)Ag(Q)da(Q)

a p

8(P) 4= r ff D. S(P, Q)ag(Q)da(Q) ,(4.2)

4Cr
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6, (P) R - D S(P,Q)Ag(Q)do(Q) (4.2)(P) 47rrP coso P C

a P

If the gravity anomalies would be known at all points of

G and, in addition, Ag would be free of noise, grad T could
be predicted at any point P outside the surface of the earth

introducing errors only due to spherical approximation and due to
minor conceptual neglections in the definition of Ag ; a

detailed discussion can be found in (Heiskanen and Moritz, 1967,

p. 240 ff.).

Naturally, the above two conditions are never fulfilled:

the function Ag , postulated by (4.2), is usually available in
terms of a step-function approximation (= mean gravity anomalies

defined on rectangular blocks); in addition, these mean anomalies

are never error-free. Therefore, two additional errors are intro-

duced in the calculation of grad T : a representation error (step

function representation of the true function Ag), and a data error

(upward continued integrated effect of data-noise). The following

two sections deal with the estimation of both errors.

4.1 Estimation of the representation error

As mentioned before, the (unknown) actual function Ag is

approximated by a step function; the size of the steps equal the

varying size of the blocks (cf. Table 2.1). Representing a function

(different from a constant) by its mean values means loss of infor-

mation, particularly in the higher frequencies. The goal is to

estimate the average effect of such information deficiencies onto

the gradient of the disturbing potential in high altitudes. Such

&L
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an estimation requires, for practical reasons, two assumptions:

a) replacement of the step function defined over rectangular

blocks by a moving average of the function, such that the

averaging region is a circle with an area equal to the block

area;

b) replacement of the rectangular zones in which the mean values

are given (cf. Fig. 2.1) by circular zones of equal size.

These simplifications are introduced in order to obtain isotropic

operators; note that siniiar assumptions have been made for the

collocati9-foriution.

Eigenvalues of integral operators with isotropic kernel

Integral operators with isotropic kernel play a fundamental

role in representation error estimation procedures.Therefore, a

brief sketch of basic relations will be given in the sequel; it

is essentially an outline of (Meissl, 1971b, p. 38ff.).

Consider the integral transformation

g(P) = ffK(P,Q) f(Q)da(Q) (4.3a)

a

with an isotropic kernel K

K(P,Q) = K(cos ) . (4.3b)

A.ccording to the Funck-Hecke formula (MUller, 1966, p.20), the

spherical harmonics { nm} are eigenfunctions of this integral

transformation; the eigenvalues n are projections of the kernel

onto the Legendre polynomials,

J JK(PQ)o nm (Q)da(Q) = nonm(P) (4.4a)
a
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with 1

K 2Tr K (t)r P (t)dt (4 .4b)
-1

An isotropic integral kernel can be represented in terms of a

series of Legendre polynomials,

K(t) knPn(t) ; (4.5a)

applying (4.4b) and the orthogonality relation of Legendre poly-

nomials,

f P n(t)Pm(t) = 2 6
2n + I rm

-1

it follows that the eigenvalues of K are given by

Kn 2n+1 (4.5b)

Let

f(P) = nmfnm (P) and g(P) = gonm(P)

n,m n,m

be spherical harmonic expansions of f and g, respectively;

then

gnm = K f (4.6)

follows from (4.4a,b). Equation (4.6) is the frequency domain ana-

logue of the integral transformation (4.3a). It will play a central

role in the following.
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The moving average operator

If the isotropic kernel B(t) of an integral transformation

like (4.3a) is constant for t a to > -1 and vanishes outside,

B is called a moving average kernel,

1 for t 0  t 1 12 ( 1-t 0 )
B(t) = (4.7)

0 else

Its eigenvalues n are obtained by an application of equation

(4.4b); as a matter of fact, they depend on to

I

a n(t 0 ) = P (t)dt1 - to n
to

The following expression can be found in (Meissl, 1971a, p. 24)

an = 1 t n 1 n- (to) - P n (to)] (4.8)an~t°) 1 -to 2n + 1 nl" "

It follows from a Taylor-linearizatin of Pn (t) at t = 1 that

a (i) M 1 (... function reproduction). (4.8)'

Di.e to the orthogonality of Legendre polynomials we obtain

8 n (-1) = 6 nO ( ... function anihilation),

Any other moving average operator will function between these two

extreme cases, reproduction and anihilation.

It is now a simple task to find the loss of information

introduced by applying a moving average operator onto a function f,
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6f(P): = f(P) fiP) = B [ - 8(t 0 ) fnm nm (P) (4.9)
n,m

The spatial Stokes kernel and its radial derivative

The disturbing potential can be represented by a series -

of solid spherical harmonics

T(r,e,x) I r( n+1 Te,); (4.10)
n=2

taking into account the relation between the disturbing potential

T and the gravity anomaly Ag in the frequency domain

R

T R Ag , (4.11)
nm n-i nm

T can be formulated in terms of Ag,

T(r,, )= R(ns+1 n- i Ag1 (8,1)

which, by expressing the Laplace spherical harmonic Ag (e,x) ex-n

plicitly, goes over into

T= (r 2 XR 1n+l" PCosk)lA

a n=2

The infinite sum is known as the spatial Stokes function S(r,p)

which is given in its closed form by equation (4.1b)

S(r,02') = -(4.12)

n=2

It is the upward continued Stokes kernel S(R,p) Its radial

derivative follows immediately,

1 fR)n+1(2n+l)(n+l) P(cos13)S(r,o) = - F- 1 ___ (4.13)rrn n 21
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r

Eigenvalues of the kernel - D S(r,-) truncated at ' =
2nr

In order to estimate the impact of neglecting Ag - infor-
mation in circular zones around the computation point on 6 , it

r

is essential to know the eigenvalue of the corresponding truncated

kernel.

If the kernel -r/27DrS(r, ) vanishes for <'o , its

eigenvalues are obtained by applying equation (4.4b)

I

s'(rt 0 ) P (2k+l)(kt1) ,n(t)Pk(t)dt. (4.14)
k=2 -r IJnl

According to (Paul, 1973), the integral of products of

Legendre functions is given by

R nk I Pn(t)P k(t)dt
-1

1 - n(n+l) k(k+l)P (P  P
(n-k) (n+k+l) 2n+l kn+1 ni 2k+l Pk + 1-1

(4.15a)

for n # k , and the recursion formula

(n+1) (2n-1) Rn-I R +2n-1

RR+nn n(2n+l) n+l,n-1 n n,n-2 2n+1 n-l,n-1

(4.15b)

for n k ; (here and in the sequel we suppress the argument to

t I

..............'- -.- - -,
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for the sake of simplicity.) Initial values are

Roo = 1 + to

R11 = (I + t )/3 (4.15c)

What follows, is a tour de force, the attempt to find a closed

expression for the infinite sum in equation (4.14).

Denoting R/r by p and using the relations (4.15a,b),

the eigenvalues sn  are given by

i s' (rt 0 ) = (2k+l) (k+l) 0k+1~n (2n+l) (n+l) n+1 R

s' (r,t0 ) I P klR + R
n k - n + n - I nn

k~n

(4.16a)

Explicitly written

so n(n+ ) - P I (2k+l)(k+l) k+1P
n 2n+1 1 n-1 k 2 (k-1) (n-k)(n+k+1) k

n k

(k+2)2 (k+l) k+lP
n k I ,k(n-k-1) (n+k+2) p  kk=3

-_--I______2__-_)___Ik +  (2n+1) (n+1) n+1 R
P nk z3 (k-2) (n-k+1) (n+k) k n 1 nfl

k~n+I

(4.16b)

We know (Tscherning, 1972) that closed expressions are available

for series of the following general form:
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F (P~) 1 Pk+1p (t) , > 0 (4.17a)k~a k

and

F (p't) 1 P + P (t) , 0 (4 .17b)
k=I-ak~oL k

(Moritz, 1980, p. 186) where a denotes a fixed integer. There-

fore, we express the coefficients of the Legendre functions in

terms of partial fractions of the form (k t± )_ ; the following

identities can immediately be verified

(2k+l)(k+1) = 6 1 -n+I 1
(k-i) (n-k) (n+k+1) (n+2) (n-i) k::T -i k7-n

n I~+ (4.18a)

n2 2~~

(k+2) 2(k+1) 4 1 n(n+1) 2 1
k(n-k-)(n+k+2) = (n+2) (n-i) k -(2n+1) (n-i) k-(n-1)

+ n (n+i) 1 1(48b
(2n+1)(n+2) k+n+ (.ib

k2(k-i) 4 1 - n(n4i) 2  1
(k- 4 (n-k+1) (nT~k) -(n+2) (n-I) Rk-2 (2n+1) (n-i) k-(n+1)'

+ n (n+l)2+)n2 1T (4.18c)

(2+) n2)R,
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Introducing these partial fractions into (4.16b) leads to infinite

sums of the following kind:

A B C

1 1p k 1 k kn1 k+

1 k-2k
kJn ktn-" k#n+1

2 1 kP k 1 k+1pk k IPk
1!2 n k=1 k-(n-1) k k=3 k+

k#n kn-1 kn+l

4 k+1 I k+ 1 k+3 k+n+l P o+ 1P j - P Pk
k2 k=1 nk=3
k~n k~n-1 k6n+ 1

4 P pk+1P k  P k+1P k

k~n-! k~n+!

TABLE 4.1 Infinite series with closed expressions.

Using the notation of (4.17a,b), closed expressions are available

for a? -2 in (Moritz, 1980, p. 187, 188); only the elements

of the 2nd row in Table 4.1 pose problems:

Paul (1973, P. 418 ff.) defines a quantity

:, ', : ,1
[ I.
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U (tP) k- 1 k(n- 1) (t) A4.19)
nk-(n-1) k

k=O
kin- 1

and arrives, after very elegant operations,at the relation

(n-1)rJn (t,P) - (2n-3)tU n1(t,p) + (n-2)U n2(t,p)

" pLl (n-1)EJ (t,1) - (2n-3)tI (t11)nn-

" (n-2)U 2 (t,1) + V2-2t (4.20)

with the auxiliary quantity

L : 12tp =, (4.21)

After some manipulations, he derives a recurrence relation for

U n(t,1)I

U (t,1) =2-3t 1 rI - (n-2)U 2(t,1)

V- P n3(t) -P n1(t) (.2

2n- 3j

Equation (4.20) and (4.22) enable us to derive a general recurrence

relation for U (t,P)

U ~ n- (2n-3)tU (tpo) -(-) t
(t'p) Ln-1 -- n-2) 2 (t

L +P n 3(t)-P nI(t) (.3
- P - - 2n-3 ni.(.3
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U (t,p) can also be related to F defined in (4.17); recallingn

the definition (4.19), we obtain

n1 n-i 1 k+1
F P U --n n+i - k-n P kk-O

and after straightforward operations involving the substitution

of (4.23), we finally find a recurrence relation for F_n

2n-1 n-2 1 k+l + F~l
F = _l to k-ln-1) 0 1Pk + Fn-
-n n k0 kO

n-i 2 ,I P +
n i k-(n-2) k + -1

k-O

1n- 1 1 k n+ Pn 2 - P n
- j+ k +Pk + + n (4.24)

Sk=Ok n n(2n-1)

With the initial values

U0 (t,p) -FI(t,p) = ln (I+ 2P)
1-P+L

U1It,p) = 1 F=

(N: = I + L - pt)

we find Un  for arbitrary n by applying the recursion formula

(4.23).

F with n > 0 and a corresponding recurrence relation
n

can be found in (Moritz, 1980, p. 188)
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F I (t,o) = UO (t,P) ,

F2 (t,o) - [L - 1 + tF1 (t,P)] , (4.25)

F (t,p) = IL + (2n-1)tF (t,P) (n-1) F (t,P) ;n no n n- 1

These are the cumbersome prerequisites which enable us to express

all infinite series of Table 4.1 in a closed form:

cc

Al : I I + k - n+1 p
k=2 - n

kin

A2 : Ik-- P n U + n n (4.26a)
k=2 n+1
k~n

2 +l+
A3 : ) F k P Pn

k=2 k+n+l k n+1 n+1 n+2 2n+P

k#n

BI k+I P FO n PB1 2pkf =F0 .- -- fp ,
k- k kn-1 n-Ik-!

kpn-I

(4.26b)

S k p onu + Pkl k-(n-1) k n n-i

kin-I
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B3 0 k+I. F P

B3:k=1 k+n+2 k n+2 n+2 2n+1 n-I

kknr- 1

(4.26b)

B4 Pk P P[k 1) l~ pnp 1,_

Col

Cl:1 k+lP F 1 n+42
Cl k=3 k-n _2 7-1 P n+l

kpkn+ 1

I3 k~ n+2 +

k~n+l1f1

cc n 1k + p 1P , P n+ l
C 3 Ik + 1 n n n ln 2 n l n l

k~n+ 1

C4 k= P k+I.P = -[11 -pp 1 - p2 P2 - lpn)

k~n+ I

(4 .26c)

With (4.18) and (4.26) s' can be expressed by
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=n( n+l) - 6 A---A--nA
n (2n+1) n+1 n-i1 L (n )(n-i1) 1 n- 1 2 n+2

~F4 n(n+1) 2 n(n)
+ OPTB - -)B + nz(+ ) B B

nL(n+2)(n-1) B1  (2nfl) (n- 2 (2n+i) (n+2) 3 4

1 F_____ 4- n(n+) n2 (n+1)
- nL(n+2) ( i (2n+1) (nln (n-I) C2 + (n1Cn2)C-

-C] + (2n+1)(n+i)n+R

(4.27)

substituting Ai. Bi. and C. the eigenvalues of the truncated

kernel, defined in (4.16a), are finally given by

s ii(n+1) fp p~ ' 6 rF 1+1
n 2n1Jn+1 n- 1) L (n+2) (n-1 ITi-

n-11 n+ 1 n-- n+2 In+1 n+1 +

n+ 1
p nI
2n+1

4F L n+1
" P LpFO F- - ip -p

n (n+2) (n-i) - -2 n-i t n+1 n-i-

" n(n+1)2  I- n+ -1+ I+1p
+(2n+1) (n-i) Lp (U 2 -n) + -L2- (P2~ n+I. n

"n 2(n+I LFn+ F + _L_ (P2 -o +3 Q)F2 +

(2+1 p + .1+ 0p + (1 p~2){~

n+1 n-In)+

pn+ 1 -~ p pp p2p'L . +C2fl1) (n+1) 0n+1 R
+1 n-) i f n- nnR

(4.28)



IP_

31

Again the dependence of to has been suppressed in P, U, F, R,

and s.

The eigenvalues s' have to fulfil various conditions;
ln

this enables us to roughly check the equation:

a) s'(p,-l) 0 because of coinciding limits of integration;
n

b) s' (n,)=2 n+ for n a 2 ; this follows from then P1 r n-1

orthogonality of the Legendre polynomials;

The interested reader will note the relation of s' to the so-
n

called Molodensky coefficients Qn defined as the eigenvalues

of the isotropic kernel S(O)/27 , where S(,') denotes Stokes'

function (Heiskanen and Moritz, 1967, p. 259 ff.),

to

Qn(t 0 ) = S(t)Pn(t)dt
-1

for to = I we obtain,

Q (1) = - i
n n-I

therefore s '(P,) is related to Q (1) byn

s' (o,1) = (n+)Q n

n+1
= 2(1+Q ) (4.29)

Formula (4.28) can easily be programmed; a very efficient routine

has been developed which calculates 1000 coefficients for arbitrary
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p. I and -1 & to  I within 0.9 seconds CPU-time on a

Univac 1100. (This value agrees with an estimate obtained by

Paul (1973, p. 422) for the computation of the Molodensky coeffi-

cients using an analogous procedure.)

Now we come back to the estimation of the representation

error. Let the free air gravity anomaly f be expanded into a
series of orthogonal spherical harmonics,

f(Po) f fnm nm(po)
n,m

then we know from (4.6) that the gravity disturbance series expan-

sion can simply be obtained through a multiplication of the coeffi-

cients by the eigenvalue which relates both quantities, the gravity

disturbance at a fixed altitude and the gravity anomaly; denoting

the gravity disturbance by 6  , it follows with (4.2) and (4.13)

that

6r (P) 2 S. (0,1) fans (P
n,m

is its spherical harmonic expansion expressed at the altitude of

P in terms of gravity anomaly coefficients {f } If we neglect

gravity information outside P = Po around the computation point

P , an error in 6 (P) is introduced which can simply be obtained

by replacing the eigenvalue s'(p,l) by the eigenvalue of the cor-n
responding truncated kernel s'(p,t 0 )n

e(P) = _ ! S(P't0 )fnm nm(P)
r n,m

If in the same region the actual gravity anomaly function is replaced
by its moving average, the coefficients are to be replaced by the

' .. . ...LL- . .. ... .. . . .. : i:- : ,.= /; :... " .'.... , .r.
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eigenvalue difference of the corresponding moving average

operator

e (P) = - S() - nm rm
r n,m

The principle should be clear: each integral transformation can

be considered as a two-dimensional convolution on the sphere;

it is well-known that a convolution of two functions in the space

domain is equivalent to a multiplication of the corresponding

spectral values in the frequency domain; in the case discussed

above, two convolutions are performed successively.

In the case to be studied in this report, 5 regions

are defined with various moving averages. Denoting the cosine of

the radius of the moving average circle for region i by T. and

the cosine of the outer radius of the circular zone, in which this

moving average is applied, by t. , the representation error is

obtained by adding the corresponding eigenvalue products,

e(P) _ p Y s ' (P't. )(T ) -(T )f It (P)62 ' i i-) i-i i nm nmr n,m i=1

(4.30)
with

w t T ) = B n ( 1 ) 1 1 a n d t o = 1

I stands for the number of regions. With

= r8( ) - B(4.31)
n 1

we can estimate the mean square representation error,
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M2 M e2 (P) --M,
6 e6 ~ if;MP mm rim r rs rs
r r n,m r,s

which, due to the orthogonality of the basis i,,p , reducesnm

to

m .  = '2 f 2  (4.32)-n nm
r n,m

Recall that f are the harmonic coefficients of the gravity
rim

anomaly's expansion into a series of fully normalized spherical
harmonics. Therefore, the sum of f2  taken over m represents

nm
the actual gravity anomaly degree variance c of degree nn

(Heiskanen and Moritz, 1967, p. 259),

c := f2 (4.33)
m

Empirical degree variances are available up to relatively small n

(say n = 36) ; higher degree variances have to be taken from a

degree variance model like

n+2  n - 1C n = Ac° (n-l)(n+B) n > 2 (4.34)

with, e.g.

A = 425 mgal 2

co = 0.999617

B = 24 ,

C2 = 7.5 mgal2

(Tscherning, 1976). With (4.33) the mean square representation

error is expressed by
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M2r ri2 f
Im = '2c (4.35),, r ri=2 n n

The eigenvalues sn(O,t O) of the truncated spatial Stokes kernel

will be needed in order to derive the representation error's

impact on the horizontal components of the gradient of the disturbing

potential. With (4.4b) the eigenvalues of the kernel S(r,;)/2r

are given by

to
s (p,t 0 ) = S(r,t)P (t)dt

-1.

which, by substituting equation (4.12) for S(r,t), is expressed

by

sn(p,t 0 ) = k P (t)P (t)dt (4.36)
k=2

The integral is denoted Rnk as before; it can be expressed in

closed form in terms of Legendre polynomials (equation (4.15a)

for n # k , and (4.15b) for n = k ). With this notation the

infinite series

s (0,t0 ) = 2k+l k+ 'Rk+ 2n+l 0 n+1 Rn k- nk n-1 nn
k:2

k#n

has to be expressed in a closed form. Introducing (4.15a,b) for

Rnk and representing products in terms of partial fractions

(Paul, 1973, p. 417, 418) leads to
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n(n+1) Pk I 2(2n+1) 1 n+2 n-I
n (2n+l) (n-i) (n+2) n P=1 n(n+l) k k- (n-1) k+n+2

k#n- 1

k+1 pk P k+1 3 n+2 n-1
+- k k- I k-n + k+n+l

kin

I ~ k+1 2 (2n+ 1) 1 - n+2 -n-i

n -nk=3 n(n+2) W k-(n+l) k+n
k~n+l

2n+l n+1

n-- nn

All occurring infinite sums have already been used before and

can be found in Table 4.1 ; the corresponding closed expressions

are given in equations (4.26a,b,c). Introducing them in (4.37),

leads to the explicit form of the eigenvalue,

(0 to) n(n+l) - P 3 F_ -

(2n+1) (n-i) (n+2) (n+1 n-i 1 n-I

(n+ n+ + n n-i + (n-l)o Pnj - (n+2) o 1+Un+ I  n n-P1I+(-)

- - p, P n+1 P + 2(2n+l)

n+I n+1 n+2 2n+1 n+ n(n+l)(n-I)

n+1 p n-I n+I I + Pn (n-)IoF _

P 2n+ n, nn+j' n

P2 - P0 + I + P, + n+ Un n--1 ti(+ ) n  n+ 2  n

+ - P2 - Po + I + + 2( ) 0 - F
n- n(n+l) ( -2

+2ntl Pn+i R  (4.38)
+n-1- nn"
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The eigenvalues have to fulfil the following conditions:

a) s (p,-1) 0 because of coinciding limits of integration,n

b ) S p l ) = 2 n + 1
S-(,-) P  for n 2; this follows from the

orthogonality of the Legendre polynomials.
As a matter of fact sn (l,to) equals the Molodensky coefficient Qn

defined before,

S (l I t o) = Q (t 0 )

Let the gravity anomalies f be expanded into a series of

Laplace surface harmonics,

f(P0 ) = fn(PO)
n

then we know from (4.6) that the disturbing potential at the level
of P can simply be obtained through a multiplication of the La-

place surface harmonics by the eigenvalues which relate both quanti-

ties; it follows from (4.1a) that

R

T(P) = s(p,l)f (P) (4.39)
n

If gravity information is neglected outside a cap of radius =

around the computation point P , an error is committed which can

be calculated by simply replacing the eigenvalue s (p,l) by the
eigenvalue of the corresponding truncated kernel s (p,tO)

R
eT (P) = S(p,t 0 )f (P)

Tn n
n

Following identical arguments as in the case of the radial derivative
of T , and using the same notation 6 for the eigenvalues of the

nmoving average kernel, we obtain a total representation error in



the disturbing potential,

I

eT (P) = R n ' )[6(T - 3(ri) ifn P ) (4.40)
n i=1

with Bn (T O ) = n (1) a 1 and to = 1 ; I stands for the number

of regions. With

X S n(Pti_1 )[B(T )1-1 (Ti )  (4.41)
n i=l i- i-I I

equation (4.40) reduces to

eT(P) = r A n f n (P) (4.42)
n

At this point we turn from the disturbing potential to the horizontal
1 1 ______components of its gradient, - D T and 1 D T ;the gravity

anomaly representation error has an impact onto these two quantities

which can directly be derived from (4.42)

e (P) = A nD fn
n

(4.43)
and

( coso nXn
A n

The mean square error of the total horizontal component

m = M e 2 + e2 }

is thus given by 1 1

m2= I AnAM Df (p)Df (P) + cos Df (P)Dn, (fP)
n n n
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which, according to (Heiskanen and Moritz, 1967, p. 262), reduces
to

I m2 = Xn(n+ (4.44)
I n=2

with the degree variances defined in (4.33).

Equations (4.35) and (4.44) are the desired representation

error estimates for the radial and the total horizontal component

of the disturbing potential's gradient.

4.2 Estimation of the error due to data inaccuracy.

In the foregoing section the error has been estimated which

resulted from a replacement of the (unknown) actual gravity anomaly

function by mean values with variable block size depending on its

distance from the computation point (see Table 2.1); in order to

obtain manageable expressions, the mean value representation was

formally replaced by a corresponding moving average. The estimated

error has been called representation error.

In general, the mean gravity anomalies are affected by noise

which primarily stems from the mean value estimation process. This

noise is the second important error source. Its impact on the

gradient of the disturbing potential could be calculated if the

error covariance function would be known; this, however, is hardly

kki
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ever the case. Under such circumstances, it is a widely applied

practice to consider the anomaly estimates as independent.

Performing the horizontal differentiations in (4.2), we

obtain the gradient of T in the following form (Heiskanen and

Moritz, 1967, pp. 233, 234)

r 4nf r j r
a

4r-R f D1  S(PQ)cosaQ Ag(Q)do(Q) (4.2)'
4r (P) PQ PQ

(f DpS(P,Q)sina Qg(Q)da(Q)
4t )PQ PQ

According to the individual block sizes of the mean values, the

integral has to be splitted up into J subintegrals if J mean

anomalies are to be considered for the estimation of the grad T

Denoting the rms estimate of the j'th mean anomaly's error by m.

its propagation into the components of grad T is as follows

m-2 (p) = M2 F S(PQ)da(Q)2
6 4 7r j f

r "ji L P~

j2(p) = [R J iM2 D S (P,Q) cosi do (Q) 2 (4.45)

rr PJ j L Ii PQ

m2 (P2 J-Im2 L S(P,Q)sina pQda(Q)

4ir~ ~ a PQ

The integrals can be evaluated using a fast numerical integration

procedure described in (SUnkel and Rummel, 1981).

4,..

-fr
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5. COLLOCATION VERSUS INTEGRAL APPROACH

Two methods of gravity disturbance vector estimation have

been presented here, the least-squares collocation solution and

the integral solution. Although they seem to be totally different,

they share a number of common features.

Let us begin with the data:

The accuracy of the three components of the gravity disturbance

vector is estimated on the basis of mean free air gravity anomalies;

mean anomalies are defined on "rectangular" blocks bounded by meri-

dians and parallels, therefore, they are bound to the global coordi-

nate system; the operator which can be thought of transforming the

actual gravity anomaly function into its mean value representation

is non-isotropic.

Covariance functions, which are commonly in use, are iso-

tropic; kernels of integral formulas are also mainly isotropic. An-

isotropy causes problems with the integration of covariance functions

and with the integration of integral kernels. In order to avoid

these difficulties, isotropy is artificially produced through a

replacement of the mean value concept by the concept of moving

average over a circular region. Both collocation and integral

formulae (representation error estimation) use tl.e eigenvalues n

of the moving average kernel; in the estimation of the representa-

tion error, the eigenvalues are used explicitly, in least-squares

collocation, they enter implicitly via the covariance function.

(Usually, an approximation is used in order to obtain closed co-

variance expressions.)

The data error estimates enter in collocation through the

error covariance matrix, which has diagonal form if no correlations

are assumed; the same diagonal form has been assumed for the esti-

mation of the error due to data inaccuracy.
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As far as the use of statistical gravity field information

is concerned, there is also no difference between the two methods:

both use this information in terms of a degree variance model

(and empirical degree variances for lower degrees); again, it

enters into collocation implicitly via the covariance function

and appears explicitly in the representation error estimation

equation.

The upward continuation is contained in the eigenvalues

of the kernel (representation error) and implicitly in the indi-

vidual covariances (collocation).

If no data are available, both methods provide identical

error estimates; if the gravity anomaly would be known at every

point of the sphere, the collocation solution would again coincide

with the integral solution. For these reasons, we can expect that

the estimations will differ only little if the gravity coverage is

reasonably good - a fact which was strongly confirmed by numerical

calculations.
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6. RESULTS - CONCLUSIONS

The error estimations of the radial and horizontal compo-

nents which are presented here, have been carried out by least-

squares collocation and / or integral formula approach. The devia-

tion was found to be in the 10% range and less, dependent main- V
ly on the data distribution; therefore, the results presented here

are practically valid for both methods.

The numerical investigation was started with a small data

set consisting of 5' x 5' mean anomalies around the computation

point; between 4 and 144 anomalies have been considered for

the estimation; two cases have been studied: error-free anomalies

and anomalies with a rms-error of ±8 mgal; the prediction point's

latitude was assumed to be zero; Tscherning's degree variance model

2 has been used with 36 lower harmonics subtracted; this corre-

sponds quite well to the assumption of error-free 50 x 50 anoma-

lies given outside the small region in which 5' x 5' anomalies

are available. Of course, this is a rather poor data distribution

and is not representative for the available distribution; I, how-

ever, like to present the result because it shows the essential

behavior of all solutions remarkably well:

Radial component:

a) The error decreases rapidly if the number of 5' x 5' mean

anomalies around the computation point increases;

b) the larger the 5' x 5' data set, the smaller is the repre-

sentation error (evident);

c) the influence of data errors decreases with increasing alti-

tude;

d) a very typical feature is the cone-effect: the data region

of strong contribution increases with increasing prediction
height, or with other words, if the number of anomalies is
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kept constant, the prediction error increases with increasing

altitude.

Horizontal component:

a) for the same data constellation, the error is more than twice
as high and decreases only relatively slowly, if the number
of 5' x 5' anomalies increases;

b) the larger the data set, the smaller is the representation

error (evident);

c) the influence of data errors decreases with increasing alti-

tude;
d) the remote zones have a very significant influence on the re-

sult (this is also known from the behavior of gravimetrically
determined deflections of the vertical, which are very closely

related to the horizontal components of grad T).
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LEAST-SQUARES COLLOCATION PREDICTEO ERROR ESTIMRTES
FOR GRAVITY DISTURBANCES IN HIGH ALT[TUDE RROIRL COMPONENTI
.1 . .. 4 BLOCKS OF 5' BY 5' MEAN RNOMRLIE=
* 2 ... 16 BLOCKS OF 5' BY 5' MERN RNOMRL;E5

3 .. 64 aLOCKS OF 5' BY 5' MEAN ANOMALIES
4 ... 144 BLOCKS OF 5' BY 5' MEAN ANOMALIES

MEAN ANOMALY STANOARD ERROR : 0 MGRL RMS, 8 MGAL RMS
COVRRIANCE FUNCTION PARAMETERS USED : 5=0.999617, A=425.28
MODEL T2, 36 LOWER HARMONICS SUBTRACTEO
RMS ERROR ESTIMATES ARE IN MGRL

16.0 0 mgal rms

8 mgal rms

14.0

12.0

3 10.0

m 8.0

a 6.0

4.0

2.0

4, ...3

0.0 I ' ' ' I ' ' I ' ' + . 4

40.0 80.0 120.0 160.0 200.0

HEIGHT (FEET)I000)

Fig. 6.1a Prediction error estimation test

mo
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LERST-SQURRES COLLOCAT[ON PREDICTED ERROR ESTIMATES
FOR GRAVITr DISTURBANCES IN HIGH ALTITUDE (HORIZONTAL COMPONENT)

1 ... I BLOCKS OF S' BYrS' MEAN ANOMALIES -
82 ... 15 BLOCKS OF 5' ST 5' MEAN RNOMqLIES
3 ... 614 BLOCKS OF 5' BY 5' MEAN ANOMALIES
4I ... 144L BLOCKS OF S' BY 5' MEAN ANOMALIES

MEAN ANOMALY STANDARD ERROR :0 MIGRL RMS p8 MGAL RMS
COVRAIANCE FUNCTION PARAMEERS UE :S.999617, R=425.28,
MODEL T2, 36 LOWER HARMONICS SUBTRACTED

IRMS ERROR ESTIMATES ARE IN MGAL

16.0

______0 mgal rms

14.0 ~8 mgal m

12.0

2l:

cc 8.

Lu

:
cc 6.0

4I.0

p 2.0

40O.0 80.0 120.0 160.0 200.0

HEIGHT (FEETxl000)

Fig. 6.1b Prediction error estimation test
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Table 6.1 contains the error estimates which have been obtained

using thedata set described in Table 2.1 with data error esti-

mates presented in Table 2.2. From these figures, we can draw

the following conclusions:

a) For a fixed altitude, the different kinds of data distribu-

tion (case 1 to 9 ) produce no significant variation in

the estimation of the radial component; the horizontal compo-

nent estimates differ from case to case up to 50%

b) The rms-estimates for the radial component are strongly in-

fluenced by the data inaccuracy which accounts for up to 90%

of the total error in low altitudes; the data error impact on the

the radial component decreases rapidly with increasing eleva-

tion. Error-free data give estimates in 6 of ±O.4 mgalr i

for 30 000 ft down to ±0.07 mgal for 200 000 ft altitude;

these figures are in excellent agreement with the ones derived

from the representation error formula.

With the available data (distribution, rms-errors), the

radial component of the gravity disturbance vector can be esti-

mated with a rms-error of ±1 mgal at an altitude of about

50 000 feet. In order to achieve the same accuracy in 30 000 ft

elevation, the data inaccuracy has to be reduced by about 60%

particularly in the region around the computation point (5' x 5'

anomalies); remote zones contribute only little.

c) The situation looks much worse for the horizontal components:

compared to the radial component, they are more inaccurate from

a factor 2 (at 30 000 feet altitude) up to a factor 6 (at

200 000 feet altitude); the impact of data inaccuracies is

relatively little (between ±1.1 mgal (30 000 feet) and ±0.2

mgal (200 000 feet)); the crucial point is the data distri-

bution : the representation error varies between ±0.2 mgal

(case 9) and ±2.9 mgal (case 1) and decreases very slowly

with increasing elevation (less than 10% in the range from

30 000 to 200 000 feet).

With the available data (distribution, rms-errors), the
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horizontal components of the gravity disturbance vector can

be estimated with an accuracy of ±2.3 mgal at 30 000 ft

elevation with the best data distribution available (case 9a);

this corresponds to an accuracy of ±0.5 for the direction

of the gravity vector. An improvement to ±1 mgal (±O'2) at

30 000 ft altitude requires a considerably better represen-

tation of the gravity anomaly field; unlike in the case of the

radial component, the horizontal component responds also con-

siderably to the representation in the medium range (up to

300 spherical distance from the computation point). In this

critical region the block sizes need to be reduced by a factor

of about 2 and the overall data accuracy should be increased

by about 30% in order to achieve this goal.

.4. - -.!
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30 000 ft 40 000 ft 70 000 ft 100 000 ft 200 000 ft

1case Iradial hor. radial hor. radial hor. radial hor . radial hor.

la t1.5 ±3.1 ±1.2 ±3.0 ±0.7 ±2.9 ±0.6 ±-2.9 I±0.4 :-2.8

b ±1.8 ±3.2 ±1.4 ±3.1 ±0.9 ±2.9 ±0.7 ±2.9 ±0.5 ±2.8

2a ±1.5 ±3.0 ±1.2 ±2.9 ±0.7 ±2.8 ±0.6 ±2.7 ±0.4 ±-2.6

b ±1.8 ±3.1 ±1.4 ±2.9 ±0.9 ±2.8 I±0.7 ±2.7 ±0.5 t2.6

I3a ±1.5 ±2.8 ±1.2 ±2.7 ±0.7 ±2.6 ±0.6 ±2.6 ±0.4 i2.5[

b ±1.8 ±2.9 ±1.4 ±2.8 ±0.9 ±2.6 ±0.7 ±2.6 ±0.5 ±2.5

4a ±1.5 ±2.6 ±1.2 ±2.5 ±0.7 ±2.4 ±0.6 ±2.4 ±0.4 ±-2.3

b ±1.8 ±2.8 ±1.4 ±2.6 ±0.9 ±2.4 ±0.7 ±2.4 ±0.5 ±2.3

5a ±1.5 ±2.8 ±1.2 ±2.7 ±0.7 ±2.6 ±0.6 ±2.6 ±0.4 ±2.5

b ±1.8 ±2.9 ±1.4 ±2.8 ±0.9 t2.6 ±0.7 ±2.6 ±0.5 ±2.5

6a ±1.5 ±2.7 ±1.2 ±2.6 ±0.7 ±2.5 ±0.6 ±2.4 ±0.4 ±2.3

b ±1.8 ±2.8 ±1.4 ±2.6 ±0.9 ±2.5 ±0.7 ±2.4 ±0.5 ±2.3

7a ±1.5 ±2.7 ±1.2 ±2.6 ±0.7 ±2.5 ±0.6 ±2.5 ±0.4 =2.4

b ±1.8 ±2.8 ±1.4 ±2.7 ±0.9 ±2.5 ±0.7 ±2.5 ±0.5 ±2.4

8a ±1.5 ±3.0 ±1.1 ±2.9 ±0.7 ±2.8 ±0.6 ±2.7 ±0.4 ±2.6

b ±1.8 ±3.1 ±1.4 ±2.9 ±0.9 ±2.8 ±0.7 ±2.7 ±0.4 ±2.6

9a ±.t23 ±. 22 ±.7 ±. 06 ±. 04 ±.
9a ±1.5 ±2.3 ±1.4 ±2.2 ±0.7 ±2.1 ±0.6 ±2.0 ±0.4 ±1.9

TABLE 6.1 rms-error estimates of gravity disturbance

vector components in various altitudes

(dimension: mgal
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